Abgeschlossene Projekte
Bereits abgeschlossene Projekte
-
Erforschung und Evaluation von organischen Laminaten für Verbindungskonzepte in Multi-Chip-Modulen
(Drittmittelfinanzierte Einzelförderung)
Laufzeit: 1. Januar 2022 - 31. Dezember 2024
Mittelgeber: Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie (StMWi) (seit 2018)Innovative, smarte elektronische Systeme werden meist erst durch dieVernetzung und den Einsatz von KI intelligent, also smart. Dies ziehteinerseits die Notwendigkeit nach einer wesentlich performanteren Verbindungder Komponenten innerhalb des Systems nach sich, als auch nach einerhoch-performanten Vernetzung einer Vielzahl solcher Systeme. Ist für den erstenAspekt insbesondere die Anbindung der Recheneinheit (DSP, FPGA oder ähnlich) andessen Peripherie entscheidend, so ist für die hochdatenratige Vernetzunginsbesondere eine sehr performante Verbindungsstruktur zwischen Recheneinheitund Schnittstelle zum Transportnetz notwendig. Hierbei realisiert dieSchnittstelle oft den Übergang von der elektrischen Domäne in die optischeÜbertragung. Um die erforderlichen Datenraten zwischen der Recheneinheit undder Schnittstelle physikalisch möglich zu machen, sind neue Aufbau- undVerbindungstechniken erforderlich, einhergehend mit neuen effizientenVerbindungsstrukturen. Insbesondere die dafür erforderliche enorme analogeBandbreite von 110GHz erfordert hier neue innovative Ansätze.
Moderne Fertigungstechnologien wie organische Multi-Chip-Module (MCM)erlauben den notwendigen hohen Integrationsgrad verschiedenster Komponenten aufeiner gemeinsamen Systemebene. Für viele Anwendungsbereiche wie beispielsweiseim Mobilfunk und in der optischen Datenkommunikation stellt das Verbinden vondigitalen Signalprozessoren (DSPs) und Speicherblöcken oder Interfacebausteinenauf einem gemeinsamen Trägermaterial (Interposer) einen entscheidenden Vorteildar. Dies wird im Rahmen des Projekts untersucht.
-
THz-System mit einem Schachbrett-Spreizspektrum für digital-modulierte Radarsensoren und Kommunikationsanwendungen mit 200 GHz Bandbreite
(Drittmittelfinanzierte Gruppenförderung – Teilprojekt)
Titel des Gesamtprojektes: Integrierte Terahertz-Systeme mit neuartiger Funktionalität (INTEREST)
Laufzeit: seit 1. Januar 2022
Mittelgeber: DFG / Schwerpunktprogramm (SPP)TIEMPO ist ein Projekt zur Entwicklung eines I/Q Sendeempfängers für ein digitales Rauschradar mit Spektrumsspreizung im Frequenzbereich zwischen 220 GHz und 420 GHz: Dies entspricht einer Rekordbandbreite von 200 GHz. In diesem Projekt wird die Idee des frequenzmodulierten Dauerstrichradars (FMCW) in Kammarchitektur aufgegriffen und ein digitales Äquivalent erstellt. Um die extrem hohe Bandbreite zu erzielen, muss eine neuartige Systemarchitektur implementiert werden, die sogenannte „Schachbrett-Spektraldivision“. Dank einer eleganten Lösung auf Systemebene, genügt ein einzelner Oszillator, der bei einer festen Frequenz betrieben wird, um fünf lokale Trägerfrequenzen (LO) zu erzeugen, die die gesamte Bandbreite abdecken. Darüber hinaus kann die Anzahl an notwendigen Sende- und Empfangskanälen halbiert werden, indem hochgeschwindigkeits-I/Q-Komponenten mit der „Schachbrett“-Architektur verknüpft werden. Die Systemarchitektur kann auch in der Kommunikationstechnik Anwendung finden, da die Digitalsequenz extern generiert wird.Sehr hohe Bandbreiten führen zu Herausforderungen im Schaltungsentwurf, dem primären Fokus dieses Antrags: (1) I/Q Datenkonverter mit 8 bit Auflösung, 20 GHz Bandbreite und 40 Gbps Datenrate; (2) I/Q Sender und Empfänger, die bei über 400 GHz arbeiten; (3) LO Signalerzeugung, die die gesamte Bandbreite abdeckt; (4) In den Chip integrierte Antennen mit 200 GHz Bandbreite und hoher Effizienz. Diese Arbeitsfrequenzen befinden sich in der Nähe oder oberhalb von fmax der geplanten Validierungstechnologie, dem 22 nm FD-SOI (Fully-Depleted Silicon-On-Insulator) CMOS Prozess von Globalfoundries. Dies erfordert neuartige Schaltungen und Systemarchitekturen, die die techologischen Einschränkungen überwinden. Nach unserem Wissen ist dieser Ansatz der erste digitale Radarsendeempfänger mit Sprektrumsspreizung in diesem Frequenzbereich, sowie der erste mit einer Bandbreite von 200 GHz.
-
Embedded Machine Learning
(Drittmittelfinanzierte Einzelförderung)
Laufzeit: 1. Oktober 2021 - 30. September 2024
Mittelgeber: Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie (StMWi) (seit 2018)Ziel dieses Vorhabens ist der Entwurf und Aufbau eines Machine Learning Systems, das über verschiedene Ebenen, von Sensorik bis zur Cloud, miteinander vernetzt und gesamtheitlich optimiert ist. Die Vorteile eines solchen Systems kann optimal durch den Einsatz neuster Radarsensorik demonstriert werden. Hierzu werden neuartige ML-Signalverarbeitungsalgorithmen zu Personenerkennung entwickelt, um eine hochauflösende Umfelderfassung für autonome Transportfahrzeuge zu realisieren. Der Fokus für das System soll auf Modularität, Wiederverwendbarkeit, Flexibilität und Skalierbarkeit liegen, sowie dabei eine möglichst enge Verzahnung der Teilkomponenten aufweisen.
-
Modellierung, Optimierung, und Hardwaredesign von durch intelligente reflektierende Oberflächen unterstützten drahtlosen Kommunikationssystemen
(Drittmittelfinanzierte Einzelförderung)
Laufzeit: 1. September 2021 - 31. August 2024
Mittelgeber: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
-
Automatisierte Lokalisierung von Mobiltelefonen verschütteter Personen
(Drittmittelfinanzierte Gruppenförderung – Teilprojekt)
Titel des Gesamtprojektes: Sensor Systeme zur Lokalisierung von verschütteten Personen in eingestürzten Gebäuden (SORTIE)
Laufzeit: 1. Januar 2020 - 31. Dezember 2022
Mittelgeber: Bundesministerium für Bildung und Forschung (BMBF) -
Elektronenpulse Modellieren – Entwicklung und Design eines Steuergerätes für Elektronenkanonen
(Drittmittelfinanzierte Einzelförderung)
Laufzeit: 1. Oktober 2020 - 30. September 2022
Mittelgeber: Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie (StMWi) (seit 2018) -
Frequenzselektive FM-Empfängerarchitekturen zur Steigerung der Sicherheit in der zivilen Luftfahrt
(Drittmittelfinanzierte Einzelförderung)
Laufzeit: 1. Januar 2020 - 30. Juni 2023
Mittelgeber: Bundesministerium für Wirtschaft und Technologie (BMWi)PassiveRadartechnologie stellt eine vielversprechende Ergänzung zu herkömmlichenRadarsystemen dar. Mit steigendem Druck aus Wirtschaft und Politik dasbegrenzte Spektrum, der für Telekommunikation und Ortung begrenztenFrequenzbänder vollumfänglich zu nutzen, steigt das Interesse an dieserTechnologie.
Ziel diesesForschungsvorhabens ist es die Technologie der Ortung durch passiveRadartechnik für die Nutzung in der zivilen Flugsicherung in Deutschland zuetablieren und neue Anwendungsbereiche zu erschließen.
Zur Verbesserungder Detektionsleistung werden verschiedene Möglichkeiten zum Aufbau einesfrequenzselektiven Analogempfängers für das FM-Band erarbeitet und in einbestehendes Passivradarsystem integriert. Für eine höchstmögliche Sensitivitätist dabei eine Filterung in verschiedenen Stufen des Empfängers unumgänglich.Diese muss jedoch, zusammen mit den frequenzumsetzenden Stufen, imGesamtsystemkontext evaluiert werden, um die Signalqualität, auch durchmögliche Imperfektionen der anlogen Realisierung, nicht zu degradieren. Füreine anschließende Verwertungsmöglichkeit ist ebenso auf eine optimale Balancezwischen Schaltungsaufwand, Kosten und Kompaktheit des Empfängers zu achten.Dazu werden die zu entwerfenden Empfängerarchitekturen zuerst inSystemsimulationen untersucht und bezüglich der Anforderungen aus der Anwendungbewertet. Anschließend erfolgt ein prototypischer Aufbau dervielversprechendsten Konzepte mit messtechnischer Verifikation derEinzelkomponenten und Evaluierung des Gesamtsystems in einem Feldtest.
-
Integrierte Multibitansteuerung von FeFET-Zellen als Gewichte in Neuronalen Netzen
(Drittmittelfinanzierte Einzelförderung)
Laufzeit: 1. Juli 2020 - 31. Mai 2023
Mittelgeber: Bundesministerium für Bildung und Forschung (BMBF)Das grundlegende Ziel des ANDANTE-Projekts ist es, innovative Hardware-Plattformen zu nutzen, um starke Hardware-/Software-Plattformen für künstliche neuronale Netze (ANN) und Spiking Neural Networks (SNN) als Grundlage für künftige Produkte im Bereich Edge IoT zu schaffen, die extreme Energieeffizienz mit robusten neuromorphen Rechenfähigkeiten kombinieren und diese in wichtigen Anwendungsbereichen demonstrieren. Das Hauptziel von ANDANTE ist der Auf- und Ausbau des europäischen Ökosystems rund um die Definition, Entwicklung, Produktion und Anwendung neuromorpher Hardware durch eine effiziente gegenseitige Befruchtung zwischen großen europäischen Foundries, Chipdesignern, Systemhäusern, Anwendungsunternehmen und Forschungspartnern.
-
UHCT - Elektronik und Hochspannung: Ein revolutionärer, ultraleichter Kopf-CT-Scanner für den Einsatz in mobilen Rettungseinheiten und Krankenhäusern
(Drittmittelfinanzierte Einzelförderung)
Laufzeit: 1. Mai 2020 - 30. April 2022
Mittelgeber: Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie (StMWi) (seit 2018)
-
Ausgleich zwischen medizintechnischen und ethischen Anforderungen bei der Erhebung und Nutzung von Sensordaten tragbarer und implantierbarer Systeme zum Monitoring chronischer Erkrankungen
(FAU Funds)
Laufzeit: 1. Juli 2019 - 30. Juni 2020Bei Menschen mit chronischen Krankheiten werden in zunehmendem Maße Sensoren im oder am Körper eingesetzt, um den Gesundheitszustand der Patienten zu überwachen und frühzeitig Verschlechterungen erkennen zu können. Welche Daten hierbei sinnvollerweise erhoben werden, ist eine zunächst medizinisch-technische Frage. Mit der zunehmenden Verbreitung von mobiler Datenerfassung im Alltag und der Nutzbarkeit dieser Daten durch unterschiedliche Interessensgruppen wird allerdings klar, dass es sich hierbei auch um eine ethische Frage über die Datenhoheit handelt. Untersucht werden soll daher, wie Handlungsanweisungen für das Design von implantierbaren oder tragbaren medizinischen Sensorsystemen entwickelt werden können, sodass diagnostische, technische und auch ethische Anforderungen erfüllt werden. Die Frage umfasst dabei zwei Ziele: zum einen konkrete Handlungsanweisungen für Medizintechniker abzuleiten; zum anderen die methodische Frage, inwiefern sich die unterschiedlichen Anforderungen überhaupt gegeneinander abwägen lassen: Da Inkommensurabilität von Normen bereits innerhalb eines geschlossenen ethischen Ansatzes auftreten kann (z.B. Prinzipialismus), ist dies für die Anforderungen aus unterschiedlichen Disziplinen noch stärker zu erwarten.
-
Entwurf hochperformanter RF-Komponenten
(Drittmittelfinanzierte Gruppenförderung – Teilprojekt)
Titel des Gesamtprojektes: Erforschung innovativer Mikrochipkomponenten für höchste Datenübertragungsraten im nächsten Mobilfunkstandard - ForMikro-MassiveData6G
Laufzeit: 1. Oktober 2019 - 30. Juni 2024
Mittelgeber: Bundesministerium für Bildung und Forschung (BMBF)Die stetig steigende Anzahl von agilen Internetnutzern mit gleichzeitig steigenden Datenvolumina, hervorgerufen insbesondere durch die Verwendung von mobilen Internet-, Video- und Cloud-Streamingdiensten ("Streaming on demand"), verursacht bereits jetzt Bandbreiteengpässe bei den bestehenden Daten- und Mobilkommunikationssystemen. Im Rahmen des Projektes MassiveData6G wird die aufkommende Bandbreitelimitierung bei bestehenden mobilen Kommunikationsinfrastrukturen so adressiert, dass zukünftig pro mobilem Nutzer mindestens 100 Gbit/s zur Verfügung gestellt werden können. Der hierzu notwendige energie- und kosteneffiziente 140 GHz Transceiver verwendet eine MIMO-Architektur mit mindestens 5 GHz Signalbandbreite und hoher spektraler Effizienz (512/1024 QAM-Signalmodulation). Darüber hinaus wird in diesem Projekt zur Adressierung des Massenmarktes eine kosten- und verlustleistungseffiziente 22-Nanometer FDSOI (fully-depleted silicon on insulator) CMOS-Technologie (22FDX) eingesetzt, die nicht nur eine leistungsfähige Implementierung der digitalen Signalverarbeitungskomponenten erlaubt, sondern auch hervorragend für die 140 GHz RF-Komponenten geeignet ist.
-
Flexible Elektronisch-Photonisch Integrierte Sensor Plattform
(Drittmittelfinanzierte Einzelförderung)
Laufzeit: 1. Februar 2019 - 31. Januar 2022
Mittelgeber: Deutsche Forschungsgemeinschaft (DFG) -
HF Komponenten und Systeme auf Basis stark skalierter Metalloxid TOLAE-Technologien (Originaltitel in englischer Sprache)
(Drittmittelfinanzierte Gruppenförderung – Teilprojekt)
Titel des Gesamtprojektes: High Frequency Flexible Bendable Electronics for Wireless Communication Systems
Laufzeit: 1. Juni 2019 - 31. Mai 2022
Mittelgeber: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
URL: https://fflexcom.de/Alternating-Contact Dünnschichttransistoren (ACTFTs)ermöglichen neue Freiheitsgrade für Bauelementeoptimierung und -einsatz. DiesesProjekt zielt speziell auf Möglichkeiten zur kostengünstigen Realisierung vonflexiblen RF-Schaltungen durch den Einsatz von kurzkanaligen ACTFTs mitselbstjustierten Kontakten ab. Mit den beiden Lehrstühlen für ElektronischeBauelemente sowie Technische Elektronik der FAU Erlangen-Nürnberg arbeiten zweiausgewiesene Einrichtungen der Halbleiterelektronik und RF-SchaltungstechnikHand in Hand an der integrierten Entwicklung von RF-Schaltungen und Systemen.Auf Basis von Metalloxid-ACTFTs werden Schlüsselkomponenten von Empfängern undSendern (z. Bsp. rauscharme Verstärker, Oszillatoren oder Mischer) aufflexiblen Substraten implementiert. Es werden neue Perspektiven für dünne,flexible Anwendungen in Industrie-, Consumer- sowie textiler/tragbarerElektronik aufgezeigt.
-
Radarsysteme bei 140 GHz in 22 nm FDSOI CMOS für genaue Gestenerkennung mit kompakten Abmessungen, hoher Energieeffizienz und digitaler Signalgenerierung
(Drittmittelfinanzierte Einzelförderung)
Laufzeit: 1. Oktober 2019 - 30. Juni 2024
Mittelgeber: Bundesministerium für Bildung und Forschung (BMBF)Millimeterwellen-Radargeräte sind unempfindlich gegenüber der Umgebung und daher für die automatische Bildgebung, z. B. bei der Gestenerkennung, unerlässlich. Im Gegensatz zur üblichen frequenzmodulierten Dauerstrichwellenform (FMCW) verwenden phasenmodulierte Dauerstrichwellenradare (PMCW) binär phasenumgetastete (BPSK) modulierte Signale, die im Empfänger digital verarbeitet werden. Da ihre Entfernungsauflösung jedoch von der Bandbreite abhängt, müssen für die gewünschte Anwendung höhere Frequenzbänder verwendet werden. Im Rahmen des REGGAE-Projekts wird das LTE einen integrierten PMCW-Radarsender entwickeln, der im D-Band mit einer Mittenfrequenz von 140 GHz und einer Bandbreite von 25 GHz arbeitet. Die Schaltkreise werden in einer fortschrittlichen 22-nm-FDSOI-Technologie (fully-depleted silicon on insulator) realisiert, die modernste Millimeterwellenleistung in Kombination mit wettbewerbsfähigen digitalen Zellen bietet. In Zusammenarbeit mit unseren Projektpartnern vom KIT und der TUD werden wir einen kompletten Demonstrator mit vier Sende- und acht Empfangskanälen realisieren, der in der Lage ist, Handgesten zu erkennen.
-
Echtzeitsignalverarbeitung verteilter Radarsysteme im Bereich des autonomen Fahrens
(Drittmittelfinanzierte Gruppenförderung – Teilprojekt)
Titel des Gesamtprojektes: Programmable Systems for Intelligence in Automobiles
Laufzeit: 16. Juni 2018 - 30. April 2021
Mittelgeber: Bundesministerium für Bildung und Forschung (BMBF)Am 1. Mai 2018 startete das Forschungs- und Innovationsprojekt PRYSTINE, unter gemeinsamer Finanzierung der Europäischen Union durch ECSEL und den nationalen Regierungen der ECSEL-Mitgliedstaaten. Der Lehrstuhl für Technische Elektronik repräsentiert im Konsortium von über 50 europäischen Partnern die FAU.
Unter den tatsächlichen Trends, die die Gesellschaft in den kommenden Jahren beeinflussen werden, zeichnet sich das autonome Fahren insbesondere durch das Potenzial aus, die Automobilindustrie, wie wir sie heute kennen, zu verändern. In der Folge wird dies auch die Halbleiterindustrie stark beeinflussen und neue Marktchancen eröffnen, da Halbleiter als „Enabler“ für autonome Fahrzeuge eine unverzichtbare Rolle spielen. Autonomes Fahren wurde als eine der wichtigsten Voraussetzungen für die Bewältigung der gesellschaftlichen Herausforderungen einer sicheren, sauberen und effizienten Mobilität identifiziert. Dazu ist ein ausfallsicheres Verhalten unerlässlich, um sicherheitskritische Situationen aus eigener Kraft zu bewältigen. Dies wird mit heutigen Ansätzen auch aufgrund fehlender zuverlässiger Umgebungswahrnehmung und unzureichender Sensorfusion nicht erreicht.
Im Projekt mit dem Titel „Programmable Systems for Intelligence in Automobiles“ (PRYSTINE) geht es im Allgemeinen darum, eine robuste und ausfallsichere rundum Wahrnehmung der Umgebung von Fahrzeugen zu realisieren. Mittels robuster Sensordatenfusion von Radar-, LiDAR- und Kameradaten, sowie ausfallsicheren Steuerungsfunktionen, soll möglichst sicheres autonomes Fahren in städtischer und ländlicher Umgebung ermöglicht werden.
Am Lehrstuhl für Technische Elektronik soll im Rahmen von PRYSTINE eine robuste Umwelterfassung und Bildgebung mittels MIMO Radarsensoren erfolgen. Hierbei sollen auch unterschiedliche Einflüsse und Szenarien, wie zum Beispiel Funkinterferenzen oder die Detektion im Nahfeld für Automobilradare betrachtet werden. Des Weiteren sollen Teile der traditionellen Radarsignalverarbeitungskette, von der Interferenzreduktion, bis hin zu Detektion, Klassifikation und Tracking von Verkehrsteilnehmern, schrittweise durch maschinelles Lernen ersetzt werden.
Vollständige Informationen über dieses Projekt finden Sie auf der offiziellen Website: www.prystine.eu -
Integration Radar-basierter Kommunikation in heterogene Fahrzeugnetze für die kooperative Interaktion von Automobilen
(Drittmittelfinanzierte Einzelförderung)
Laufzeit: 1. September 2018 - 31. August 2020
Mittelgeber: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH) -
Programmable Systems for Intelligence in Automobiles
(Drittmittelfinanzierte Gruppenförderung – Teilprojekt)
Titel des Gesamtprojektes: Programmable Systems for Intelligence in Automobiles
Laufzeit: 1. Mai 2018 - 30. April 2021
Mittelgeber: Europäische Union (EU) -
Radarüberwachung und Kommunikation für Qualitätssicherung und Zustandsüberwachung von Rotorblättern
(Drittmittelfinanzierte Gruppenförderung – Teilprojekt)
Titel des Gesamtprojektes: Radarüberwachung und Kommunikation für Qualitätssicherung und Zustandsüberwachung von Rotorblättern
Laufzeit: 1. November 2018 - 31. Oktober 2021
Mittelgeber: Bundesministerium für Wirtschaft und Technologie (BMWi)
-
Charakterisierung von NB-IoT Modulen
(Drittmittelfinanzierte Einzelförderung)
Laufzeit: 1. Juni 2017 - 30. November 2017
Mittelgeber: Industrie -
Computertomographie-System für Röntgen-Abbildungen in Sicherheitsanwendungen
(Drittmittelfinanzierte Gruppenförderung – Gesamtprojekt)
Laufzeit: 15. August 2017 - 15. Oktober 2019
Mittelgeber: Bayerisches Staatsministerium für Wirtschaft und Medien, Energie und Technologie (StMWIVT) (ab 10/2013) -
Design von Mehrstrahl-Röntgenröhren
(Drittmittelfinanzierte Gruppenförderung – Teilprojekt)
Titel des Gesamtprojektes: Computertomographie-System für Röntgen-Abbildungen in Sicherheitsanwendungen
Laufzeit: 15. August 2017 - 15. Oktober 2019
Mittelgeber: Bayerisches Staatsministerium für Wirtschaft und Medien, Energie und Technologie (StMWIVT) (ab 10/2013) -
Development of a Multiband Doherty Amplifier
(Drittmittelfinanzierte Einzelförderung)
Laufzeit: 8. März 2017 - 31. Dezember 2017
Mittelgeber: Industrie -
High-Performance 5G-mmW-Transceiver mit MIMO- und Beam-Steering-Funktionalität auf Basis einer neuen zukunftsweisenden BiCMOS-Technologie
(Drittmittelfinanzierte Gruppenförderung – Teilprojekt)
Titel des Gesamtprojektes: High-Performance 5G-mmW-Transceiver mit MIMO- und Beam-Steering-Funktionalität auf Basis einer neuen zukunftsweisenden BiCMOS-Technologie
Laufzeit: 1. April 2017 - 31. März 2020
Mittelgeber: Bundesministerium für Bildung und Forschung (BMBF) -
Mehr Lebensqualität und Sicherheit für pflegebedürftige Menschen: Innovative berührungslose Überwachung von Vitalparametern
(Drittmittelfinanzierte Gruppenförderung – Teilprojekt)
Titel des Gesamtprojektes: GUARDIAN
Laufzeit: 1. Januar 2017 - 31. Mai 2020
Mittelgeber: BMBF / Verbundprojekt
URL: https://www.interaktive-technologien.de/projekte/guardianMotivation
In der Pflege schwerkranker Menschen ist die Erfassung von Atmung und Herzschlag zur Krisenerkennung ein wichtiges Hilfsmittel. Die bisher hierfür notwendige Ableitung über Elektroden und Kabel ist störanfällig und schränkt Pflegebedürftige in ihrer Selbstbestimmung und Lebensqualität ein. Das Projekt GUARDIAN soll die berührungslose und kontinuierliche Erfassung von Vitalparametern ermöglichen.
Ziel und Vorgehen
In GUARDIAN wird die berührungslose Erfassung der Vitalparameter aus mehreren Metern Entfernung mittels eines multimodalen Hochfrequenzsensors entwickelt. Hierfür wird ein schwaches elektromagnetisches Hochfrequenzsignal ausgesandt und dessen Veränderung analysiert. Aufgrund der hohen Distanzauflösung können Bewegungen, die Atmung und Herzschlag hervorrufen, aus dem Messsignal extrahiert und analysiert werden. Dabei sind überlagerte Bewegungsartefakte zu kompensieren. GUARDIAN wird somit ermöglichen, Beschwerden wie Schmerzen und Luftnot sowie Gesundheitskrisen wie Herzrhythmusstörungen und Herzkreislaufstillstand umgehend und automatisiert zu erkennen. Gleichzeitig sollen die ethischen, rechtlichen und sozialen Fragen des Verfahrens sowie dessen Auswirkungen auf die Palliativ- und Intensivpflege, Pflegebedürftige, Pflegefachkräfte und Angehörige intensiv untersucht werden.
Innovation und Perspektiven
Durch den Einsatz der Sechstor-Interferometrie als neues Konzept werden alle Körperbewegungen mit bisher nicht erreichter Distanzauflösung im Mikrometerbereich berührungslos aus bis zu mehreren Metern Abstand erfasst und Atmung sowie Herzschlag extrahiert. Die Konsortialpartner sehen in der zu entwickelnden Technologie ein hohes Potential beim Gesundheits- und Beschwerdemonitoring Pflegebedürftiger in Krankenhäusern, allerdings auch im ambulanten Bereich in Pflegeheimen und zuhause.
-
Mehr Lebensqualität und Sicherheit für pflegebedürftige Menschen: Innovative berührungslose Überwachung von Vitalparametern - Teilvorhaben medizinische Testung und Anwendung
(Drittmittelfinanzierte Gruppenförderung – Teilprojekt)
Titel des Gesamtprojektes: Mehr Lebensqualität und Sicherheit für pflegebedürftige Menschen: Innovative berührungslose Überwachung von Vitalparametern
Laufzeit: 1. Januar 2017 - 31. Mai 2020
Mittelgeber: Bundesministerium für Bildung und Forschung (BMBF) -
Mobile Based Animal Tracker (Mobile-BAT)
(Drittmittelfinanzierte Einzelförderung)
Laufzeit: 1. Januar 2017 - 30. Juni 2020
Mittelgeber: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)Das Projektziel von Mobile-BAT ist der Aufbau eines miniaturisierten Langzeit-Ortungsmoduls zur automatisierten Routen-Erfassung wandernder Fledermausarten basierend auf extrem stromsparenden, passiven Loggen von Mobilfunksignalen. Dieses Modul soll als Datenlogger auf dem Rücken von Fledermäusen befestigt werden und die Wanderroute in einer Genauigkeit erfassen, die bezüglich der örtlichen und zeitlichen Auflösung Rückschlüsse auf die Wahl der Route des Tieres zulässt. Um eine Einschränkung der Bewegungsfreiheit der Fledermäuse zu vermeiden und das natürliche Verhalten so wenig wie möglich zu beeinflussen, muss der gesamte Sensorknoten, bestehend aus der Batterie, Schaltungsträger und Antennensystem weniger als 2 Gramm wiegen und einen angemessenen Formfaktor besitzen. Aufgrund der geforderten Laufzeit zum Erfassen einer Zugperiode von bis zu sechs Monaten muss ein Konzept gefunden werden, welches die Fixierung des Sensorknotens über diesen langen Zeitraum mit minimalen Einschränkungen für das Tier und aus limitierten Energieressourcen den Ortungsbetrieb während dieser Zeitspanne ermöglicht. Die Logger werden nach Rückkehr und Fang der Fledermäuse wiedergewonnen und ausgewertet. Zur Erleichterung des Auffindens wird der Sensorknoten nach Erkennen der Rückkehr ein leistungsschwaches VHF-Signal zur automatischen Peilung aussenden. Aus den empfangenen und aufgezeichneten Empfangsparametern der Mobilfunkbasisstationen werden die Flugroute und der Migrationsfortschritt mit maximaler Genauigkeit abgeleitet. Hierzu werden in einem neuen Ansatz in Ausbreitungsmodellen für Mobilfunksignale auch topografische Informationen berücksichtigt, was eine automatisierte Berechnung der zu erwartenden Signalkonstellation an beliebigen Koordinaten ermöglicht. Die vom Sensorknoten gespeicherten Basisstationsdaten werden auf diese Datenbank abgebildet und zu einer konkreten Position verrechnet. Vorteilhaft ist hierfür, dass durch den passiven Systemansatz ohne ein Einbuchen in ein bestimmtes Mobilfunknetz alle verfügbaren Basisstationssignale in allen möglichen Mobilfunkbändern, unabhängig von einem bestimmten Provider, für die Positionsbestimmung genutzt werden können, was die Zahl der möglichen Messpunkte pro Koordinate stark erhöht und in einer genaueren Position resultieren wird.Das Projekt Mobile-BAT wird erstmals wissenschaftlich belastbare Einblicke in die Migrationsstrategien wandernder Fledermäuse ermöglichen. über den konkreten Anwendungsfall hinaus wird erwartet, dass die neuartige passive mobilfunkbasierte Ortung grundlegende Erkenntnisse zur extrem stromsparenden Eigenortung im Bereich ressourcenlimitierter drahtloser Sensornetze und Internet of Things für den Einsatz in nahezu allen Ländern der Welt liefert. -
RADiation and reliability challenges for electronics used in Space, Avionics, on the Ground and at Accelerators
(Drittmittelfinanzierte Gruppenförderung – Teilprojekt)
Titel des Gesamtprojektes: RADSAGA
Laufzeit: 1. März 2017 - 28. Februar 2021
Mittelgeber: Innovative Training Networks (ITN)Reliability and radiation damage issues have a long and important history in the domain of satellites and space missions. Qualification standards were established and expertise was built up in space agencies (ESA), supporting institutes and organizations (CNES, DLR, etc.) as well as universities and specialized companies. During recent years, radiation concerns are gaining attention also in aviation, automotive, medical and other industrial sectors due to the growing ubiquit…
-
Dünnschicht-Transistoren mit einer neuartigen Architektur für Hochfrequenzschaltungen und Systeme
(Drittmittelfinanzierte Gruppenförderung – Teilprojekt)
Titel des Gesamtprojektes: High Frequency Flexible Bendable Electronics for Wireless Communication Systems
Laufzeit: 1. Juni 2016 - 30. Mai 2019
Mittelgeber: DFG / Schwerpunktprogramm (SPP)In aktuellen Dünnschichttransistoren (Thin-Film Transistors, TFTs) werden Source- und Drainkontakte einheitlich oberhalb oder unterhalb des Halbleiters angebracht. Die Kontaktierung auf gegenüberliegenden Seiten in Alternating Contact TFTs (ACTFTs) ermöglicht neue Freiheitsgrade für Bauelementeoptimierung und -einsatz. Dieses Projekt zielt speziell auf Möglichkeiten zur kostengünstigen Realisierung von Kurzkanal-ACTFTs für den Einsatz in RF-Schaltungen ab.Mit den beiden Lehrstühlen für Elektronische Bauelemente sowie Technische Elektronik der FAU Erlangen-Nürnberg arbeiten zwei ausgewiesene Einrichtungen der Halbleiterelektronik und RF-Schaltungstechnik gemeinsam an der integrierten Entwicklung von RF-ACTFTs und daraus abgeleiteten Schaltungen und Systemen. Auf Basis von Metalloxid-TFTs werden Bauelementphysik, RF-Verhalten und neue Schaltungsansätze erforscht und neue Perspektiven für dünne, flexible Anwendungen in Industrie-, Consumer- sowie textiler/tragbarer Elektronik aufgezeigt. -
Stationäre digitale Brust-Tomosynthese für Brustkrebs Vorsorgeuntersuchung - Simulation
(Drittmittelfinanzierte Einzelförderung)
Laufzeit: 1. Juni 2016 - 31. Mai 2018
Mittelgeber: Bayerisches Staatsministerium für Wirtschaft und Medien, Energie und Technologie (StMWIVT) (ab 10/2013)
-
Interferometer-MMIC und Sensorsystementwurf
(Drittmittelfinanzierte Gruppenförderung – Teilprojekt)
Titel des Gesamtprojektes: Sichere und interaktive Steuerung von Produktionsanlagen durch vernetzte Umfeldsensorik
Laufzeit: 1. Januar 2015 - 31. Dezember 2017
Mittelgeber: BMBF / Verbundprojekt
-
Messsystem zur Betriebszustandsanalyse von Windkraftanlagen
(Drittmittelfinanzierte Einzelförderung)
Laufzeit: 1. September 2014 - 30. November 2017
Mittelgeber: Bayerisches Staatsministerium für Wirtschaft und Medien, Energie und Technologie (StMWIVT) (ab 10/2013) -
Multiband Doherty 2
(Drittmittelfinanzierte Einzelförderung)
Laufzeit: 21. März 2014 - 31. Dezember 2016
Mittelgeber: Industrie
-
Miniaturisierter, rekonfigurierbarer Sensorknoten mit Ortungsfunktionalität zum Erfassen von Messwerten und Sozialkontakten zwischen Fledermäusen
(Drittmittelfinanzierte Gruppenförderung – Teilprojekt)
Titel des Gesamtprojektes: FOR 1508: Dynamisch adaptierbare Anwendungen zur Fledermausortung mittels eingebetteter kommunizierender Sensorsysteme
Laufzeit: seit 1. August 2012
Mittelgeber: DFG / Forschungsgruppe (FOR)Zur Erforschung des Verhaltens von Fledermäusen soll im Projekt ein Sensorsystem entworfen werden. Diese Sensoren müssen auf der Fledermaus angebracht werden, um die Fledermaus im Flug zu orten. Damit sie unbeeinträchtigt ist, muss der Sensorknoten leicht und sehr kompakt sein. In dem hier vorgestellten Teilprojekt soll die Modul-Integration der miniaturisierten drahtlosen Sensorknoten mit Ortungsfunktionalität erfolgen. Für den avisierten Einsatz auf einer fliegenden Fledermaus sind dabei die wichtigsten Randbedingungen ein minimales Gesamtgewicht (max. 2 Gramm inklusive Batterie, Schaltungsträger und Antenne) und ein Formfaktor, der die Fledermaus in ihren natürlichen Bewegungen nicht einschränkt. Für dieses Teilprojekt stellen diese beiden Vorgaben eine große Herausforderung an den Entwurf einer Multiband-Antennenlösung dar, die sowohl in ihrer Geometrie stark verkürzt als auch dreidimensional an den Körper der Fledermaus anzupassen ist. Auch die Aerodynamik muss hierbei berücksichtigt werden. Neben einer Ortungsfunktionalität, die durch Integration des in TP 8 entworfenen Ortungs-ICs realisiert wird, soll auch eine Kommunikation zwischen verschiedenen Sensorknoten möglich sein. Um die Lebensdauer der eingesetzten Batterie zu maximieren und das zu entwerfende Energiemanagement des Moduls zu entlasten sollen energieeffiziente Übertragungsprotokolle untersucht werden. Durch die Staffelung der Arbeitspakete wird nach einer Realisierung der Grundfunktionalität im ersten Schritt die Komplexität des mobilen Sensorknotens durch Hinzunahme weiterer Funktionen nach und nach erhöht und gipfelt zum Projektende in einem leichten und miniaturisierten drahtlosen Sensorknoten mit Lokalisierungs- und Kommunikationsschnittstelle für den Einsatz auf einer fliegenden Fledermaus. -
Multiphysikalischer Schaltungsentwurf basierend auf mikroakustischen HF-MEMS-Komponenten
(Drittmittelfinanzierte Gruppenförderung – Teilprojekt)
Titel des Gesamtprojektes: FOR 1522: Multiphysikalische Synthese und Integration komplexer Hochfrequenz-Schaltungen
Laufzeit: seit 1. Juni 2012
Mittelgeber: DFG / Forschungsgruppe (FOR)Teilprojekt 2 beschäftigt sich mit der multiphysikalischen Modellentwicklung und Optimierung mikroakustischer MEMS‐Komponenten. Dabei werden die Schwerpunkte auf die Charakterisierung und Simulation verschiedener BAW‐Komponenten gelegt. Je nach Einsatz der jeweiligen Komponenten in dem im Rahmen der gesamten Forschergruppe zu entwerfenden mikroelektromechanischen Frontend wird der Fokus vor allem auf die Leistungsverträglichkeit, das Temperaturverhalten und die Analyse von Nichtlinearitäten gerichtet, da starke Temperatureinflüsse und hohe Leistungen zu unerwünschten Frequenzverschiebungen, Schädigungen und Alterung der Bauelemente führen. Parallel dazu werden Schnittstellen mit den anderen Teilprojekten der Forschergruppe MUSIK identifiziert und entwickelt, um elektrische und thermische Wechselwirkungen zwischen den Bauelementgruppen berücksichtigen sowie die komplementären Modellansätze zu einer ganzheitlichen und durchgängigen Modellierung der resultierenden HF‐MEMS‐Schaltung zusammenführen zu können. Aus der Bauteilanalyse gewonnene Daten führen zu Modellen für die Beschreibung des temperaturabhängigen übertragungsverhaltens, welche anschließend bei der Optimierung des Entwurfs eingesetzt werden. In einem weiteren Schritt wird die thermische Interaktion zwischen wichtigen Komponenten des MEMS‐Funksystems wie Oszillatoren, Leistungsverstärkern und passiven Komponenten erforscht.
-
SmartSensorsB: Erforschung eines Millimeterwellen-Sensors zur nicht-invasiven Erfassung von Blutparametern
(Drittmittelfinanzierte Gruppenförderung – Teilprojekt)
Titel des Gesamtprojektes: Spitzencluster Medical Valley, Verbund Intelligente Sensori
Laufzeit: 1. Juli 2010 - 30. Juni 2014
Mittelgeber: BMBF / SpitzenclusterIn dem Forschungsvorhaben „Smart Sensors B" wird im Rahmen des Spitzenclusters Medical Valley an einem hochfrequenzbasiertem Sensorknoten zur nicht-invasiven Messung von Blutparametern gearbeitet. Die elektrische Eigenschaften erfahren eine Konzentrationsabhängige, charakteristische änderung. Diese änderungen lassen sich mit immer kostengünstigeren, integrierten Hochfrequenzschaltungen nicht-invasiv ermitteln. Letzteres könnte zukünftig eine portable, automatisierbare Langzeitmessung diverser Blutparameter erlauben.